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Abstract

The problem of solving a nonlinear system is transformed into a bi-objective
nonlinear programming problem, which is then solved by a prototypical trust
region filter SQP algorithm. The definition of the bi-objective problems is
changed adaptively as the algorithm proceeds. The method permits the use of
second order information and hence enables rapid local convergence to occur,
which is particularly important for solving locally infeasible problems. A proof
of global convergence is presented under mild assumptions.
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1 Introduction

The problem we consider is that of a general system of m nonlinear inequalities of
the form

ci(x) <0 i=1,2,...,m, x € R" (1.1)

The formulation allows nonlinear equations to be included by expressing them as back-
to-back inequalities, that is an equation ¢(x) = 0 would be written as two separate
inequalities ¢(x) < 0 and —c¢(x) < 0in (1.1). We choose this form of notation because
it allows us to consider relaxing one of these inequalities, but not the other.
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We might first ask what we want from a method for solving (1.1). Of course we
would like it to find a solution to given accuracy if one exists. Also we would like it to
indicate when solutions do not exist. Then we would like the methods to be reliable
(possibly by giving a global convergence proof), efficient (with an expectation of rapid
local convergence), and practical (easy to implement, good numerical experience,
solves large problems, etc.). In particular we observe that some methods for solving
(1.1) can converge very slowly when solutions do not exist. We look for methods that
aim to satisfy all the above criteria.

As we are solving nonlinear problems we can expect to use iterative methods,
and we use x®, k& = 1,2,... to denote the successive iterates. The most obvious
method to use is based on using successive linearization, in which a displacement d*)
is calculated on iteration k£ that solves the system
P raPTa<o  i=1,2,...,m (1.2)

)

This calculation can be carried out using any method for Phase 1 of LP. Then x*)

is updated to give x**1) = x*) 4 d*®)_ In the context of solving nonlinear equations,
this is the well-known Newton’s method. (We use the notation that ¢! = ¢;(x*)),
a, = Vg, agk) = az-(x(k)), and we let A®) denote the matrix with columns agk) for
i=1,2,...,m). This method is known to exhibit local and second order convergence
near a regular solution, but its global behaviour is unpredictable. It is also possible
that the method can fail because the linearized system is inconsistent, even if (1.1)
does have solutions.

An alternative approach is to pose (1.1) as a norm minimization problem

minimize h(x) = |cT(x)]| (1.3)

x€R™

in some convenient norm || - ||, where ¢t denotes the vector of infeasibilities ¢ =

max(¢;, 0). This problem can also be solved by successive linearization (a so-called
Gauss-Newton method), or else h(x) might be used as a merit function in a Newton
method with line search. The latter idea helps to improve the global properties of
Newton’s method, but there are still potential difficulties. Powell [5] gives an example
in which convergence to a non-stationary point of h(x) is observed, which is clearly
unsatisfactory. Moreover, in the neighbourhood of a non-zero local minimum of h(x),
such as occurs when (1.1) is infeasible, very slow linear convergence can occur, due
to the inadequacy of the linear model. We give an example of this below.

These deficiencies are addressed in the Si; QP trust region method in which the [;
norm is used to define h(x) and the [;QP subproblem

e 13T p(k) < (k) (k)T +
minimize -d"B dﬁL;(cZ +a; " d)

[dll < p,
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is solved on each iteration. The matrix B®*) approximates the Hessian of the La-
grangian and so enables the method to converge superlinearly when the problem is
infeasible. Usual ideas for updating the trust region radius p can be employed. A dis-
advantage of the method is the relatively complicated form of the subproblem, which
needs special purpose software for optimum efficiency. It is possible to convert the
subproblem to a regular QP problem by adding extra variables, but this is less effi-
cient and the resulting data structure is less convenient. Another disadvantage is that
the method can sometimes be slow in following ‘curved grooves’ in h(x). The method
can be improved by allowing non-monotonic steps, for example by using second order
correction (SOC) steps.

This paper has some ideas in common with the Sl; QP method, but the main dif-
ference is to replace the norm minimization problem by a bi-objective optimization
problem, so that the idea of a ‘filter’ can be used, which has proved very effective
in solving NLP problems. Roughly speaking, the idea is to divide the constraints
into two sets, indexed by .J and J* respectively, where J* denotes the complement
{1,2,...,m}\J. One set (J*) represents those constraints which are close to being
satisfied, or for which the linearized constraint provides a good local model. Con-
straints in J are those that are proving difficult to satisfy, so that we are content to
try to reduce a measure of their infeasibility. Thus we consider solving a so-called
nonlinear feasibility problem

minimize ci(x)*
wrny{ TR L
subject to ¢;(x) <0 i€ Jt

which is the minimization of the sum of constraint violations in .J, subject to the
system of inequalities given by constraints in .J*. As the constraints in .J are infeasible,
we require the inclusion

J CV(x) (1.4)
to hold, where
V(x) = {i|c(x) >0} and A(x) = {i | ¢;(x) =0}

denote respectively the sets of violated constraints and active constraints at x. The
sets J and J* are updated as the algorithm proceeds. The two objectives are to
minimize the /; norm of constraint violations for (i) the J constraints, and (ii) the
J+ constraints. A similar idea is used by Fletcher and Leyffer [2] with good practical
experience, but without a proof of global convergence. The main aim of this paper
is to investigate to what extent recent developments in convergence theory for NLP
filter methods can be applied in the context of solving (1.1). This leads us to propose
a prototype filter method for solving (1.1) that is possibly more soundly based than
that in [2].
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We motivate our use of NFP(J) with a few observations relating to the detection
of infeasibility in (1.1). There are two situations which we might regard as giving
some indication that (1.1) is infeasible, namely (1) a local minimizer of h(x) > 0 is
found, and (2) a point is located at which the linearized system (1.2) is infeasible,
which we might describe as a point of local infeasibility. It is readily proved that (1)
= (2), so that finding a local minimizer of h(x) (in any norm) provides a method for
finding a point of local infeasibility. Of course, making a global statement about the
infeasibility of (1.1) is impractical for nonlinear systems of any size, as it is equivalent
to the global minimization of h(x).

Solving NFP(.J) provides another way of finding a point of local infeasibility. (It
is, in fact, equivalent to finding the minimizer of a scaled /; norm of ¢*(x), showing
that there is a close relationship between the solution of NFP(J) and the use of the
[; norm.) To see this, consider the HIMMELBD test problem in the CUTE test set.
This has just two nonlinear equations

a(x) = 22 4+121,—-1=0
cr(x) = 4927 + 4925 + 8431 + 2324wy — 681 = 0

representing a parabola and a circle, respectively. The problem has two solutions
in the vicinity of (£20, —35). Moreover, the two curves almost intersect at a point
close to the origin, with the result that there are nonzero local minima of h(x) in this
vicinity. A local minimizer in the /; norm is at (0.286,0.279) and this is a solution of
NFP(J) for J = {1} and J* = {2}. This point is on the line 7z, + 124 = 36/x; which
contains all points of local infeasibility. Local minimizers of h(x) in other common
norms also lie on this line, close to the [; solution. However, different from all these
is the solution of NFP(J) for J = {2} and J+ = {1} at (0.289,0.076), which also
provides a point of local infeasibility near the origin. This illustrates that, as regards
finding a point of local infeasibility, solving NFP(J) is equally effective as minimizing
an overall norm function, and is convenient in that it allows us to formulate (1.1)
as a bi-objective optimization problem. A plot of the parabola and circle near the
origin shows two curves that are close to being parallel straight lines, illustrating
the difficulty of finding a point of local infeasibility using only linear information.
Posing the problem as NFP(J), in either of the above ways, enables the feasibility
problem to be treated as an NLP problem and facilitates the inclusion of second order
information to give rapid convergence.

In Section 2 we describe a basic algorithm format involving a QP subproblem, and
in Section 3 we prove global convergence to a point that satisfies Kuhn-Tucker (KT)
conditions for NFP(.J), subject to an MFC(Q constraint qualification. In Section 4
we discuss various ways in which a practical code may be developed, based on the
prototype algorithm.

The constraints of (1.1) may include some linear constraints, including simple
bounds on the variables, and the methods we consider are such as to maintain fea-
sibility with respect to the linear constraints. Thus we assume that the linear con-
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straints have been checked for consistency using any method for Phase 1 of LP. If
the linear constraints are consistent, then this procedure yields an initial point that
is feasible for the linear constraints, and if not the system can be rejected without
further calculation.

2 An SQP Filter-type Algorithm

In this section we describe a prototype SQP filter trust region algorithm for which we
can prove global convergence. This algorithm is flexible as regards practical imple-
mentation, and various decisions are open to choice. The algorithm is based on the
SQP method applied to NFP(J;) , where the set Ji is chosen adaptively as the algo-
rithm proceeds. Thus we attempt to find a vector d which solves a QP subproblem
P 13T T
minimize ;d' Bd + ;(cZ +a;d)
(3
QP(x,p,7) subject to ¢; +ald <0 i€ J*
ldfl < p.

We require that J is such that ¢; + al’d > 0 for all i € J, and also that J C V(x).
Because our algorithm respects linear constraints, a consequence is that .J is composed
only of nonlinear constraints. Exactly how the set .J is chosen is described below,
although it is readily possible to achieve these requirements. We allow the possibility
that J is empty, in which case, if the trust region constraint is inactive, the step d may
be regarded as a Newton-step in a method for solving (1.1). The symmetric matrix B
may be regarded as an approximation to the Hessian of a Lagrangian function, and
is important in practice as it enables rapid convergence to be obtained when second
order effects are significant. However, in our global convergence theory, B has only
a minor role, so we do not reflect the fact that the QP (x, p,.J) depends on B in the
notation.

We now turn to the definition of an NLP filter as introduced in [2]. In an NLP
context, there are two conflicting aims, namely to minimize some objective function
f(x), and to satisfy the constraints, which we can regard as the minimization of
some measure of infeasibility h(c(x)). In a filter pairs of values (h, f) are considered,
obtained by evaluating h(c(x)) and f(x) for various values of x. A pair (h®, f®)
obtained on iteration i is said to dominate another pair (h"), f4)) if and only if both
h®M < hU) and f® < fU) indicating that the point x is at least as good as x\/)
in respect of both measures. The NLP filter is defined to be a list of pairs (h®, f®)
such that no pair dominates any other. The notation F®*) is used to denote the set
of iteration indices j such that (A, f9)) is an entry in the current filter. (In practice
it is not necessary to store the index set F®*) the notation is just for theoretical
convenience.) A point x is said to be “acceptable for inclusion in the filter” if its
(h, f) pair is not dominated by any entry in the filter. This is the condition that

either  h<h?  or f<fU (2.1)
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for all 7 € F®*). We may also wish to “include a point x in the filter”, by which we
mean that its (h, f) pair is added to the list of pairs in the filter, and any pairs in
the filter that are dominated by the new pair are removed. The filter is used as an
alternative to a penalty function as a means of deciding whether or not to accept a
new point in an NLP algorithm.

As in previous work it is necessary to slightly strengthen the inequalities (2.1) in
order to force sufficient improvement in at least one of the measures of infeasibility.
This modification enables a convergence proof to be made, but has negligible effect
on practical performance. Here we use the type of test suggested originally by Chin
and Fletcher [1] and used by Fletcher, Leyffer and Toint [3]. Thus the condition for
a point being acceptable to the filter is that its (h, f) pair satisfies

either h < BhY) or f+~h < fO) (2.2)

for all j € F*). Here 8 and v are preset parameters such that 1 > 3 > v > 0, with
B close to 1 and 7 close to zero. This filter test has an important inclusion property
that if a new point is added to the filter, the set of unacceptable points for the new
filter always includes the set of unacceptable points for the old filter.

In the context of solving a feasibility problem, we shall use a similar notation to
specify the two objective functions to be used in the filter algorithm, that is

file)=> "¢, hile)=)_ ¢ (2.3)

i€J ieJt

To simplify the notation, we denote fﬁlz) by f*), and hgi) by h*). We also denote
V f;(c(x)) by gs(x), or for example by g5 when x = x°. At first sight one might
think that a different filter would be needed for each set .J that is generated by the
algorithm. In fact little is lost by having a single filter in which pairs based on different
sets J are entered. It is readily shown that if the same vector ¢ is measured by f(c)
and hy(c) for various different sets J then none of the resulting pairs will dominate
any other (excluding ties), and all can coexist in the filter.

The algorithm that we suggest is a trust region algorithm, and there are two
important conditions that need to be satisfied if a global convergence proof is to be
obtained. One is that the trial step d should be the optimal solution (or nearly so) of
some model subproblem, and another is that if the nonlinearities are negligible then
sufficient agreement between the actual and predicted reductions in the objective
function should be obtained. How to obtain these conditions when the set J changes
is a novel feature of the algorithm that we propose. The difficulty lies in the fact
that changes to J change the objective and constraints in the underlying problem
NFP(.J). In regard to QP(x®, p,.J), we introduce the terminology that the solution
d and the set J conform if and only if cgk) + agk)Td > 0 for all # € J. We shall see
that if we choose J so that d and J conform then we are able to satisfy the above
conditions.
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We state our algorithm by means of the flow diagram of Figure 1. Associated with
each point x*) at the start of an iteration is a set J, C V; that contains no linear
constraint indices. There is also a current filter F*) and the current pair (h(’“), f(k))
is acceptable to F*) but is not included in it. The algorithm contains an inner loop
in which the trust region radius p is successively reduced until a suitable new point is
obtained. The inner loop is initialized with any value of p > pmin, Where ppin > 0 is
a preset parameter. For each value of p in the inner loop we determine a set J, C Ji
such that, when QP (x*), p, .J,) is solved, then the solution d and the set .J, conform.
One way to do this is by means of the following loop.

1. Let J = J;, and assume that a solution d to QP (x®), p, J) exists.
2. If cgk) + agk)Td > () for all ¢ € J, then set J, = .J and exit.

3. Remove any indices 7 for which cz(k) + agk)Td <0 from J.

4. Find a solution d to QP (x®, p,.J) and goto step 2.

Note in steps 3 and 4 that the old d is feasible in the new QP subproblem, which
must therefore be compatible. Only a finite number of repeats are required since .J;,
is a finite set and each repeat removes one or more indices from J. We now let d
denote the solution of QP (x™*, p, J,).

Next we calculate the vector ¢(x*) + d) and determine another set .Jg, = J;, N
V(x®) 4 d), which is the prospective value of .J,;; for the next iteration. The set .Jg
is obtained by deleting from .J, any indices i for which ¢;(x*) 4-d) < 0. We note that
the inclusions

JL C T S Vg and Jo C Ji S Vi (2.4)

both hold, but the sets J, and Jg may not always be the same. We use the set Jg to
determine a candidate pair (h,,, f,). This is tested for acceptability to the filter and
to (h®), f(#)), and also possibly for sufficient reduction, as described below. If any of
these tests fail then p is halved and the inner iteration is repeated. Otherwise the inner
iteration terminates and the current values of p and d are designated respectively to
be p*), and d®). We then update x*+t1) = x*) 4 d*) and assign Jy.4 = Jg, and
proceed to the next iteration.

There is also the possibility to be considered that the constraints of QP(x(k), P, Jk)
are inconsistent. In this case, any point x*t1) € X and set Ji11 € Viyq for which
(RE+1) | 1)) §s acceptable to the filter may be chosen. Such values may be obtained
in many ways, for example by taking x**1) = x*) and choosing a subset of V, for
Jr11. It is clear that acceptability to the filter can always be obtained by taking
Ji11 = Vj, since this provides R*+D = 0. Note that Vi \Ji cannot be empty as the
constraints in the subproblem would all be linear and hence consistent. The choice of
which subset to take is arbitrary, although in practice it seems better to take as small
a subset as possible. This may be implemented by just relaxing a few constraints
from Vi \ Ji, possibly determined by using Phase 1 of an LP solver.
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The tests in our filter algorithm are similar to those in [3], but with additional
features to allow for the fact that .J; may change from iteration to iteration. If qgk) (d)
refers to the objective function of QP (x*, p, J), and d is the displacement obtained
by solving QP (x™*), p, J,), then we denote

Ag=q5)(0) =y (@) = ¥ — ¢ (@) (2.5)
as the predicted reduction in f;, and
Af =% — fr (c(x® + d)) (2.6)

as the actual reduction in f;, where J, and Jg are defined as above. When the inner
iteration terminates we designate the resulting values of (2.5) and (2.6) to be Ag®)
and Af®) respectively, and we have

AfR) = flb) _ flk+1) (2.7)

by virtue of the method of choosing Ji;.

We shall continue to use the terminology of [3] in which an f-type step is one in
which an improvement in f(x) is predicted, as defined by Ag > 0. In this case, we
require a sufficient improvement condition

Af > o0lAq (2.8)

to hold, where o € [0, 1] is a preset parameter. If the inner iteration terminates with
an f-type step, we refer to the iteration as an f-type iteration. We note that Ji.; C Ji
for an f-type iteration. If Aq < 0, or if QP(x®, p, .J;) is incompatible, then we refer
to the step as an h-type step, and we expect an improvement in A to occur. We follow
the ideas of [3] and only include the pair (h*), f*)) in the filter if iteration & is an
h-type iteration. We also use 7(%) to denote the least value of h) for all j € F®*).
As in [2] and [3] we may also impose an upper bound u on h¥) to ensure that
the linearizations of the active constraints are reasonably representative. This can be
implemented by initializing the filter with an entry (u/g3,0). We initialize x(!) with
any point in X, and choose J; such that h(") < w, if necessary by choosing J; = V.

3 A Global Convergence Proof

In this section we present a proof of global convergence of the SQP-filter algorithm
of Figure 1 when applied to (1.1). We make the following assumptions.

Standard Assumptions

1. All points x that are sampled by the algorithm lie in a non-empty closed and
bounded set X.
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2. The problem functions ¢;(x), i = 1,2,...,m are twice continuously differen-
tiable on an open set containing X.

3. There exists an M > 0 such that the Hessian matrices B%*) satisfy [|[B®)||, < 2M
for all £.

An additional assumption is also made later in the paper. It is a consequence of
the standard assumptions that the Hessian matrices of the ¢; are bounded on X and
without loss of generality we may assume that they also satisfy bounds || V?¢;(x)||2 <
2M, i =1,2,...,m. The assumptions on X are readily achieved by including simple
upper and lower bounds in the constraint set. A consequence is that the sequence of
iterates has at least one accumulation point, which we shall denote by x*>°. Quantities
derived from x> will be referred to, for example, by V., or c*.

We would like our theory to make a meaningful statement when the constraint
set contains some equations, which are represented as back-to-back inequalities as
described in Section 1. We therefore define the set £ C {1,2,...,m} as the index set
that contains the inequalities arising from equations. Of course £ has even cardinality.
At a point x° we shall denote £, = £ N A, and we observe that the maximum rank of
the set of vectors a7, i € &, is equal to %|€o|, on account of the duplication due to the
presence of back-to-back inequalities. We then say that the Mangasarian-Fromowitz
constraint qualification (MFCQ) holds at x° for the problem NFP(V,), if and only if
both (i) the set of vectors aj, i € & has rank $|&,|, and (ii) there exists a vector s
that satisfies s”a; = 0,4 € & and s”al < 0,1 € A,\&..

It is possible for the algorithm to terminate finitely, either if a feasible point of
(1.1) is found, or if a KT point of a feasibility problem NFP(Vy) is found (d = 0
solves QP (x®), p, J;.) for some k (note that .J; = Vy is inferred)). Otherwise it follows
that the sequence of iterates is infinite, and we prove in Theorem 1 below that there
exists a limit point x> that is either a feasible point of (1.1), or satisfies necessary
conditions for NFP(V,,), if MFCQ holds at x*. In the context of solving NFP(V,),
we note that x° is necessarily a feasible point of NFP(V,), by definition of V(x). Thus,
if MFCQ holds, KT necessary conditions for x° to solve NFP(V,) are equivalent to
the statement that the set of directions

{s | s"gy. <O
s'fa=0 ic€é&, (3.2)
sTal <0 i€ A\ }

is empty. This condition is therefore equivalent to the existence of KT multipliers
(although we do not use this result in our proofs) and it has been shown (Gauvin [4])
that the multiplier set is bounded.

We first collect a number of useful results, analogous to those in [3]. First we state
a result that is a consequence of the filter acceptance test.
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Lemma 1 Consider sequences {h®)} and {f*®)} such that h®) > 0 and f*) is
monotonically decreasing and bounded below. Let constants 3 and v satisfy 0 < v <

B < 1. If for all k

either  A*HD < gp®) o f) _ pkED) > (kD)

then h(®) — 0.

Corollary Consider an infinite sequence of iterations on which (h*), f(¥)) is entered
into the filter, where h®) > 0 and {f*¥} is bounded below. It follows that h*) — 0.

Proof Both results are proved in [3].

Next we prove two simple lemmas that enable us to handle the second order terms
in the analysis.

Lemma 2 Consider minimizing a quadratic function ¢(«) (R — R) on the interval
a € 10,1], when ¢'(0) < 0. A necessary and sufficient condition for the minimizer to
be at « =1 is ¢" + ¢'(0) < 0. In this case it follows that $(0) — ¢(1) > —3¢'(0).
Proof Trivial, but see [3].

Lemma 3 Let the standard assumptions hold and let d, Jy and Jg be determined
as described in Section 2. It then follows that

¢ (x®) +d) < p*nM i€ Jg (3.4)
and
Af > Aq—p*(m+1)nM. (3.5)
Proof By Taylor’s theorem, we may express
c;(x® 4+ d) = cgk) + agk)Td + 1d"V?¢i(y:)d (3.6)

where y; denotes some point on the line segment from x*) to x*) + d. The set
Jé can be divided into two sets, J;- and J;\Jp. For i € J, we have by virtue of
Ji- C Jt that ¢® +aP"q < 0. Then (3.4) follows from (3.6), using the inequality
|d||2 < n||d||%, and the bounds on d and V2¢;. For i € J;\Js, we have ¢;(x®+d) <0
and (3.4) follows trivially.

It follows from (2.5), (2.6) and the properties of .J; and .Jg that

Af —Aqg= %dTB(’“)d + Z(Cz(k) + az(k)Td) _ Z Ci(x(k) +4d).

i€ €]y

The quadratic term is bounded below by —p?nM by virtue of the inequality ||d|3 <
n||d||%, and the bounds on d and B®). Fori € J,N.Jg, the terms under the summation
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are together equal to —1d”'V?¢;(y;)d, by virtue of (3.6), and hence bounded below
by —p*nM. For i € J,\(J; N Jg), it follows by conformity that cgk) + agk)Td > 0.
Finally, for i € Jg\(J+ N Jg) we have cz(k) + agk)Td < 0 and hence, as in the first part
of the lemma,

ci(x® +d) < 1d"V2e(yi)d < p*nM.

Putting all these cases together yields (3.5). qg.e.d.

The next lemma provides a condition on p which ensures that the QP step is
acceptable to the filter entry for which A9 = 7*) and hence to all entries in F®*).

Lemma 4 Let the standard assumptions hold and let d, Jy and Jg be determined as
described in Section 2. It follows that hy, (c(x®) + d)) satisfies the test hy, (c(x®) +
d)) < gr®) if p* < r® /(mnM).

Proof It follows from (2.3) and (3.4) that Ay, (c(x® + d)) < p*mnM, and the
result follows if p? < A7) /(mnM). q.e.d.

Next we derive conditions on p under which an f-type step is acceptable in a neigh-
bourhood of a point at which MFCQ holds that is not a local solution of NFP(V,).

Lemma 5 Let the standard assumptions hold and let x° € X be any point at which
V, is not empty and MFCQ holds, that is not a KT point of NFP(V,). For anyx € X,
any J C V(x), and any B such that ||B|ly < 2M, let d, J, and Jg be determined
as described in Section 2. Then there exists a neighbourhood N° of x° and positive
constants ji and k such that if x € N° N X, if J is such that V, C J C V,U A,, and

if p satisfies
phy,(c) < p <k, (3.7)

then it follows that QP(x, p, J) is compatible and QP(x, p, J;) has a feasible solution
d at which the predicted reduction satisfies

Ag > 1pe, (3.8)
the sufficient reduction condition (2.8) holds, and
Af > hy(e(x+ ), (3.9)

which ensures acceptability to (R*®), f®) when x = x*) and J = Jj,.

Proof  Because x° is not a KT point of NFP(V,), and MFCQ holds, it follows
that the vectors af, ¢ € & have rank 1|&| and there exists a vector s° for which
||s°|l2 = 1 that satisfies (3.1), (3.2) and (3.3). We note that these conditions imply
that $|&| < n. We let Az denote a matrix with £|&,| linearly independent columns
chosen from the vectors aj, ¢ € &,, and we let cg denote the partition of ¢ whose

gradients are the columns of Ag. By linear independence and continuity there exists
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a neighbourhood of x° in which A} is bounded, where A* denotes (AT A)"tAT. If
&, is not empty, we denote p = —A;’ch;, which is the closest point to d = 0 in the
manifold of linearized active equality constraints, and let p = ||p||2. Also we denote
s= (I — AgAD)s®/||(I — Ag Af)s°]|2, which is the closest unit vector to s° in the null
space of AL. If &, is empty, we set p =0, p = 0 and s = s°. Tt follows from (3.1) and
(3.3) by continuity that there exists a (smaller) neighbourhood N° and a constant
¢ > 0 such that

sTgy, < —¢ and sTa; < —¢, i€ A\E, (3.10)

when gy, , a; and s are evaluated for any x € N°. By definition of p, it follows that
p = O(hy,(c)) so we can choose the constant p in (3.7) sufficiently large so that p > p
for all x € NV°.

First we derive some results about the QP subproblems that arise. From the
trust region constraint ||d|| < p we can deduce the following. For inactive constraints
i€ (VoUA,)" and x € N°N X, there exist positive constants ¢ and @, independent
of x, such that

¢ < —¢ and aZ-Ts <a,

where ¢; = ¢;(x), etc., for all vectors s such that [[s||,, < 1. It follows that
+ald<—c+pa<0 ic(V,UA) (3.11)

if p < é/a. Thus inactive constraints at x° remain inactive in the QP subproblem if
k in (3.7) satisfies k < ¢/a. In a similar way, we can show that constraints i € V,
remain infeasible if p is sufficiently small. Thus there exist positive constants ¢ and
a, independent of x, such that

¢ >c and a/d > —pa.

Hence, if p < k < é/a, it follows that ¢; +a] d > 0. Hence for any set J, that is
determined, we deduce that 7+ € J,, and hence V, C J,. Moreover, it follows from
the Taylor series (3.6) that

ci(x+d) > ¢é— pa— p’nM.

Thus, if p < k < é/(a+ énM/a), it follows that ¢;(x + d) > 0. Therefore, for any set
Jg that is determined, we deduce that ¢ € Jg, and hence V, C Jg.

We now establish feasibility of the subproblem QP(x, p,J) for any x € N° N X
and any J for which V, C J C V, U A,. We consider the line segment defined by

d* = p + Oé(p - p)S, o€ [07 1]7 (312)
for a fixed value of p > p. Because the vectors p and s are orthogonal, it follows that

1d*]l2 = VP2 +2(p—p)2 < Vi — 200+ 20> < p
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since p > p. Consequently [|d*|| < p, and hence d* satisfies the trust region
constraint for all a € [0, 1].

We also note that d* satisfies the linearized active equality constraints ce+ALd =
0. Thus any constraints of QP(x, p, J) for which i € &, are satisfied by d*. The only
remaining constraints of QP(x, p, J) come from A,\E,. It follows from (3.10) and
(3.12) that

cit+ajd =c+ap+(p—plajs<c+ap—(p—p}e<0

if
p2p+(ci+aip)/e.

By definition of p, the right hand side of this inequality is O(hy,(c)) so we can choose
the constant g in (3.7) sufficiently large so that ¢; +a’d' < 0, i € A°. Thus d'
is feasible in QP(x, p, J) with respect to the linearized active inequality constraints,
and hence to all the constraints, using results from above. Hence we have shown that
there exist positive constants p and  such that d! is feasible in QP(x, p, J) for all
x € N° and all p satisfying (3.7). Because we have shown above that J, also satisfies
V, CJ. CV,UA,, the same conclusions apply to QP (x, p, J).

Next we aim to obtain a bound on the predicted reduction Aq and hence show
that (2.8), (3.8) and (3.9) hold. First we consider the line segment (3.12), and define
#(cr) to be the objective function of QP(x,p,J;) evaluated at d*. Denoting the
objective function by ¢(d) = 3d”Bd + g”d where g = > ic, &, it follows from the
chain rule that

¢'(a) = (p—p)s"Vq(d*) = (p — p)s’ (g + B(p + alp — p)s)).
Hence, using (3.10), bounds on B and p, and p > p
¢'(0) = (p—p)s” (g+Bp) < (p—p)(s" Bp—¢) < (p—p)(2Mp—e) < (p—p)(2Mp—2) <0

if p < 1e/M. Now ¢" = (p — p)*s” Bs < 2(p — p)>M so

¢" +¢'(0) <2(p—p)*M + (p—p)2Mp —¢) = (p—p)2(p— P)M +2Mp — ) <0

if p < 1£/M. In this case, applying Lemma 2, the minimum value of ¢(a) occurs
at @ = 1 and the reduction in ¢ satisfies ¢(0) — ¢(1) > —3¢'(0). After adding in a
contribution for the change in ¢ along p, we may express

q(0) —q(d") > —1¢'(0) + O(p) > L(p — p)(c — s" Bp) + O(p) > Lpz + O(p).

Since d' is feasible and p = O(hy,(c)), it follows that the predicted reduction (2.5)
satisfies

Aq > Z ¢; + 3pe + O(hy,(c)) > 3pe — Ehy,(c)

ieJ\Jy
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for some ¢ sufficiently large and independent of p. Thus (3.8) is satisfied if p >
6&hy,(c)/e. This condition can be achieved by making the constant p in (3.7) suffi-
ciently large.

It follows from (3.5) and (3.8) that

-1 3p*(m + 1)nM
Ag — Aq - pE €

Then, if p < (1 —0)e/(3(m + 1)nM) it follows that (2.8) holds.
Finally, we deduce from (2.8), (3.4) and (3.8) that

Af = yhyy(c(x+d)) > tope — yp*mnM >0

if p < 30¢e/(ymnM). Thus we may define the constant  in (3.7) to be the least of
soe/(ymnM) and the other upper bounds on p that are required earlier in the proof.
qg.e.d.

Now we proceed to analyse the algorithm of Figure 1. First we need a result
that is similar to Lemma 6 of [3]. Here x*) and B®) are fixed and we consider what
happens to the solution of QP(x™*), p, .J;) as p is reduced.

Lemma 6 Let the standard assumptions hold, then the inner iteration terminates
finitely.

Proof Consider iteration k. If J, = V, and x*) is a KT point of NFP(V},), then
d = 0 is a KT point of QP(x*), p, J;.) and the algorithm terminates. Otherwise, if
the inner iteration fails to terminate, then the rule for reducing p ensures that p — 0.

For the most part we may now use the proof of Lemma 5 in the case that x = x° =
x*) and p is sufficiently small. If the trust region constraint ||d||o < p is satisfied,
we deduce as in Lemma 5 that V, C Jo C J, C Vi and V, C J; C Jp C V. Since
x° = x® it follows that V, = J, = Jg = J, if the QP subproblem is to remain
compatible. Thus if V;\.J; is not empty, then QP (x"*), p, .J;) is incompatible if p is
sufficiently small, and the inner iteration terminates on this account. It follows from
Ve = J; that k) = 0.

For sufficiently small p, it now follows from Lemma 5 and (3.8) that an f-type step
is generated that satisfies the sufficient reduction condition (2.8). Also it follows from
Lemma 4 that a step acceptable to the filter is generated. Thus the inner iteration
terminates for sufficiently small p. qg.e.d.

We are now in a position to state our main theorem. We need however to make
an additional assumption. We discuss the conditions under which this assumption
might hold in Section 4.
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Supplementary Assumption
Under the conditions of Lemma 5, if x*) is in the neighbourhood A, then the pre-
dicted reduction satisfies (3.8) for all p > k.

Theorem 1 If standard assumptions and the supplementary assumption hold, then
the outcome of applying the algorithm of Figure 1 is one of the following.

(A) A feasible point x®) of (1.1) is found.

(B) A KT point of problem NFP(V}) is found (d = 0 solves QP(x™®, p, J;) for

some k).
(C) There exists an accumulation point x> that is feasible in (1.1).

(D) There exists an accumulation point X that either fails to satisfy MFCQ or is
a KT point of NFP(V,).

Proof We note in case (B) that if V};\Ji is not empty then d = 0 is not a feasible
point of QP (x™*, p, J;.), which is a contradiction. Thus V, = J; and hence x*) is a
KT point of problem NFP (V). Otherwise we need only consider the case in which
none of (A), (B) or (C) occur, and MFCQ is satisfied in case (D). Because the inner
loop of each iteration is finite (Lemma 6), the outer iteration sequence indexed by k
is infinite. All iterates x*) lie in X, which is bounded, so it follows that the sequence
has one or more accumulation points. Because (C) does not occur, it follows that V,,
is not empty.

First, we consider the case that the main sequence contains an infinite number of h-
type iterations, and we consider this subsequence. For an h-type iteration, (h(k), f(k))
is always entered into the filter at the completion of the iteration, so it follows from
the corollary to Lemma 1 that A*) — 0 on this subsequence, and hence c;® = 0 for
i € J+, where J is any set that occurs infinitely. It follows that J+ C VOLO and hence
Vs C J. It also follows from (1.4) that J C Vj and hence by continuity that

Vo €T C Vo U Ao, (3.13)

It must also follow that 7¥) — 0. Moreover, only h-type iterations can reset 7%, so
there exists a thinner infinite subsequence on which 7¢#+9) = p*) < 7(*) ig get. We
can extract a yet thinner sequence on which the set J, = J is constant. Thus we
consider an accumulation point x* and a subsequence indexed by k& € S of h-type
iterations for which x*) — x>, A — 0, 7¢*+1) = p*) < 7(-) and J, = 7.

We now examine the proposition that x> is not a KT point of NFP(V,). Because
MFCQ is satisfied, the vectors aj°, ¢ € £, are linearly independent, and the set
defined by (3.1), (3.2) and (3.3) is not empty. For sufficiently large k£ € S it follows
that x®) is in the neighbourhood A, as defined in Lemma 5. We show that this
leads to a contradiction.
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Lemma 5 provides conditions on p which ensure that QP (x®), p, J;) is compatible,
and the step d obtained by solving QP(x*), p, J,) satisfies Af > 0Aqg > 0 and
f® > f + yh, where f and h denote f = f(x*) +d) and h = h(c(x® + d)),
respectively. This shows that the conditions for an f-type step are satisfied, and the
entry (h, f) is acceptable to (not dominated by) (h®), f(®)). Moreover, it follows from
Lemma 4 that x*) 4+ d is acceptable to the filter if p> < B7%*)/(mnM). Thus we
deduce that if p satisfies

237 (k)
pht®) < p < min{ W?;—M, m} , (3.14)

then (h, f) satisfies all the conditions for an f-type iteration to occur.

Now we need to show that a value of p in this range will be located by the inner
iteration. It follows for & € S sufficiently large that 7*) — 0 and the range (3.14)
becomes

(3.15)

In the limit, because h®) < 7*) and because of the square root, the upper bound in
(3.15) is more than twice the lower bound. Now consider how the inner loop of the
algorithm works. Initially a value p > p° is chosen, which in the limit will be greater
than the upper bound in (3.15). Then, successively halving p in the inner loop will
eventually locate a value in the interval (3.15), or to the right of this interval. If
a step is accepted for any p > k it follows by the supplementary assumption that
Aq > %pe > 0, which implies that the step is f-type. If p is in the interval (3.7) then
we have shown that the step is f-type and is acceptable. Thus if k£ € S is sufficiently
large, an f-type iteration will result. This contradicts the fact that the subsequence
is composed of h-type iterations. Thus x> is a KT point and D is established in this
case.

Next we consider the alternative case that the main sequence contains only a finite
number of h-type iterations. Hence there exists an index K such that all iterations
are f-type iterations for all k > K. Tt follows that (R +1), f:+1) is always acceptable
to (h®), f*)) and also that Af®) > ocAq¢® > 0, so that the sequence of function
values {f(} is strictly monotonically decreasing for k& > K. It therefore follows
from Lemma 1 that A%®¥) — 0, and hence that any accumulation point x> of the
main sequence is a feasible point. Because f(x) is bounded on X it also follows that
Y ks k Af®) is convergent. As above, we now aim to contradict the proposition that
there exists an accumulation point at which MFCQ holds that is not a KT point.

Because all iterations k& > K are f-type, no filter entries are made and so 7*) =
7(5) is constant. For sufficiently large k& > K it follows that x*) is in the neigh-
bourhood N defined in Lemma 5. It follows as above that sufficient conditions for
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accepting an f-type step are that p satisfies

237(K)
ph®) < p < min{ b , HL} : (3.16)

mnM

This time the right hand side of (3.16) is a constant, p say (p > 0) independent of k,
whilst the left hand side converges to zero. Thus, for sufficiently large k, the upper
bound must be greater than twice the lower bound. In this case, as p is reduced in the
inner loop, either it must eventually fall within this interval or a value to the right of
the interval is accepted. Hence we can guarantee that a value p*) > min(%ﬁ, p°) will
be chosen. Using the supplementary assumption for p > «, we then deduce from (2.8)
and (3.8) that Af® > Loe min(4p, p°) which contradicts the fact that >, , Af*)
is convergent. Thus x> is a KT point and I is established in this case also. g¢.e.d.

4 Discussion

Of course, the prototype algorithm that we have outlined is flexible and may be
implemented in various different ways. For example, the rule for adjusting p in the
inner iteration could be more intricate, based partly on interpolation. The choice
of an initial value of p for the inner iteration requires that the condition p > pmin
is satisfied, but is otherwise unspecific. We envisage that in practice pm, is close
to zero (say 107*) so that the effect of this restriction is negligible. Thus to a large
extent these algorithms allow the more usual trust region procedure in which one may
double or halve (say) the value of p from the previous iteration, only setting p = pmin
if it would otherwise be less than pnin. We have successfully used such ideas in our
codes.

An important issue is that of how to specify the matrices B*) that are used to
define the QP subproblems. There is the issue of whether to use exact Hessians and
what multiplier estimates to use. If quasi-Newton updates to the Hessian are used
then there is the question of which update formula to use. Also it can be important
to pay attention to the asymptotic behaviour of the algorithm, to ensure that the
second order convergence property of the SQP iteration is not compromised. It is
not yet clear for NLP filter algorithms how best to do this, even though second order
convergence is almost invariably observed for regular problems. Also there is the
question of whether it is advantageous to use SOC steps. All these issues must be
addressed when the algorithms that we suggest here are implemented.

There is one idea that we do feel is useful, in regard to that step in the algorithm
in which QP(x®), p, .J},) is inconsistent and some constraints in V;\.J; are relaxed.
One possible way to proceed is to relax all constraints in Vj\.Jg, but this can be
disadvantageous because it creates a QP subproblem with a large null space, that can
be expensive to solve. An effective way of choosing J;.; that usually relaxes only a
few constraints is to make use of a Phase 1 LP solver that is based on minimizing the
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existing sum of infeasibilities, until either a feasible point is obtained or no further
improvement is possible. Only those constraints that are infeasible in the solution
given by the Phase 1 solver are relaxed. Some care has to be taken that linear
constraints do not go infeasible in the Phase 1 solver. Also it is necessary to ensure
that the resulting (h, f) pair is acceptable to the filter. If not, further constraints are
relaxed, one at a time, starting with the most infeasible, until an acceptable (h, f)
pair is located.

In regard to the calculation of a set J, such that d and J, conform, one idea
has already been described in Section 2. Another way to proceed is the following.
Initially, in QP (x™*), p, J}.), there are no constraints on cz(k) + agk)Td for i € Ji. First
we introduce the reverse inequality cgk) + agk)Td > 0 into the QP subproblem for all
such constraints, and re-solve the new QP subproblem. If all the inequalities cgk) +
agk)Td > 01 € J; are inactive then we have a conforming solution. Otherwise we relax
any reverse constraints that have become active and repeat the QP solution. This
process is repeated until no reverse inequalities are active, in which case a conforming
solution has been obtained. A feature of this method, if global solutions of the QP
are calculated, is that the value of Aq increases monotonically as p is increased. The
opposite is observed in practice for the technique described in Section 2. An advantage
of the technique of Section 2 is that the feasibility of QP(x™*), p, J;) is immediately
determined on the first step of the process.

Another way to compute a set J, such that d and J, conform is to solve the
subproblem

inimi LqT (k) : Tq)+
minimize sd' BWd + -EZJ(CZ +a;d) @)
i€Jy .
subject to  ||d||ec < p

for each value of p on the inner iteration. This has the advantage that if global
solutions of the QP are calculated then an optimum choice of Ag is made, and the
supplementary assumption can be dispensed with. However, this subproblem is not
a standard QP problem, so implementation is much less convenient. Also, on many
iterations the set .J, that would be obtained is no different from that obtained by the
method of Section 2, for example when J, = J; as often happens. Thus it is likely
that there is little to be gained by using this technique.

We now present some observations on whether the assumptions under which The-
orem 1 holds are likely to be valid. For the Standard Assumptions, the only case
which is likely to cause difficulties is if an a-priori bound on ||[B®)|| is not available.
This is likely to be correlated with the issue of whether or not any multiplier esti-
mates are bounded, since these are used directly if exact Hessians are calculated, or
indirectly in the updating formula if quasi-Newton updates are used. But we have
already observed that if MFCQ holds, then multiplier estimates are bounded. Thus
it is likely in practice that ||B*)|| will be bounded in this case.
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The validity of the Supplementary Assumption is less easy to guarantee. An
obvious difficulty arises when the matrix B®) is indefinite, and local but not global
solutions are calculated by the QP solver. However, even if global solutions are
calculated, for example when the matrices B*) are positive semi-definite, then all is
not straightforward. This is because the technique for finding a solution in which d
and J, conform, does not obviously (to us) lead to a proof that Ag is a monotonically
increasing function of p, even if global solutions of the QP are assumed. (Such an
argument has been used in other filter-type proofs). On the other hand, as mentioned
above, the set J. will often be the same as that calculated by (4.1), in which case
(3.8) can be deduced from an assumption that global solutions of the QP are satisfied.
Moreover, difficulties do not seem to arise in practice with trust region methods for
other types of problem due to the calculation of local but non-global solutions of the
QP subproblems. Thus it seems very unlikely that condition (3.8) will fail to hold in
practice, near a non-K'T point.

We have implemented a feasibility restoration technique that is based on the algo-
rithm given in this paper, and is consistent with the convergence theory. Numerical
results are comparable to those described in [2]. A quasi-Newton version of the tech-
nique is also under development. We hope to report on the performance of these
codes in a future paper.
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Initialize with some x(V) € X,
k =1, only (u/f3,0) in the filter
and .J; C V; such that AV <y

initialize p > pmin

if Ag®® < 0 then
put (h*), £ into filter

Find J, C J such that

d solves QP(x™®), p, .J,),
and d and J; conform.

incompatible

solution exists

Y

put (h*), £ into filter

Choose any x*t1) ¢ X
and any Jiy1 C Vi such
that (hkF+1D) f+D) g
acceptable to the filter

if x®) is a KT point
(d = 0) then finish
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the filter and (R, f(k))?
yes
. yes
is Af <o0Aq and
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Figure 1: An SQP Filter Algorithm
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